Course: DD Leaky Feeder System

Module 3.1:

Fundamentals

Overview

What is DD LFS?

Pre-requisite courses

- 1. Digital Drift Conventional
- 2. Leaky Feeder LineAmp

DDLFS combines those two systems onto a single cable:

DATA COMMS: 5 - 98 MHz TDD (i.e. not amplified)

VOICE COMMS: 145 - 157 MHz & 170 - 185 MHz FDD

System Components

As per regular leaky feeder system (course 2), plus:

LineAmp + Ethernet

Ethernet Coupler

QuadPort v2 (with VHF pass-through)

Basic passives from other vendors can be re-used:

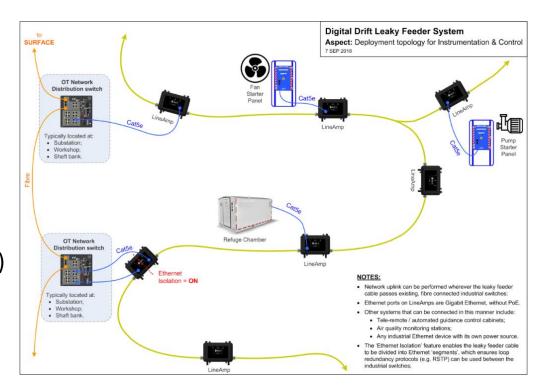
Cable joiner

Terminator

Power dividers from other vendors need to be tested an qualified by RFI before using with DDLFS:

Power coupler

2-way branch / splitter


3-way branch / splitter

These devices need to pass 5 - 98 MHz satisfactorily

Fundamentals - Reminder

- Amplify full duplex 2-way voice radio signals along leaky feeder cables
- Superior gain control strategy suited to multi-carrier systems
- Passes the Digital Drift Signal (5-98 MHz) thus allowing Ethernet networking and power distribution combined onto VHF Leaky feeder;
- 2-way remote diagnostics capable with auto topology mapping (monitoring system yet to be released)
- Uses existing leaky coaxial cable in mines
- ~1Gbps half-duplex shared between the nodes on each 'coax segment'
- Low latency ~0.5ms added by each Digital Drift 'coax segment'

Digital Drift Leaky Feeder - Active Devices

LINEAMP

Provides bi-directional amplification of the VHF radio channels, while passing the broadband data signal with minimal loss. The self-adjusting gain algorithm continually adapts to maintain consistent output levels, even as changes are made to the rest of the leaky feeder system.

LINEAMP + ETHERNET

Provides all of the LineAmp features, plus a fully-featured Digital Drift Repeater. This enables:

- Data to be bridged onto and off the cable through the built-in RJ45 ports
- Digital re-generation of the broadband data signal, which ensures high data speeds over the network

QuadPort 2

- Leaky Feeder System: an in-line device that can be spliced into the VHF leaky feeder system's cable to break out 4 x PoE++ ports. This takes the place of an Ethernet Coupler + QuadPort v1 when breaking out PoE ports from the Leaky Feeder System.
- Data Only System: replaces the Branch + QuadPort v1 from the existing "data-only" Digital Drift System.

Gain Management Controller

- · Automatic gain control
- Diagnostics interface Future

Digital Drift Leaky Feeder - Passive Devices

Power Coupler

The Power Coupler is used to inject DC power onto the leaky feeder cable.

SPLITTER

Evenly divides both the VHF radio signal and the broadband data signal.

ETHERNET COUPLER

Passes the VHF radio channels with minimal loss, while tapping a portion of the power and broadband data signal, enabling QuadPort V1's to be spliced into the line wherever they are needed.

Cable Joiner

The Cable Joiner is used to connect two sections of cable - passing the DC power, VHF radio and broadband data signals through.

DC Block

The DC Block isolates power between two sections of cable - while passing the VHF radio and broadband data signals through. Can be used as IS barrier.

Termination Box

The Termination Box is used to prevent end of line reflections at the end of a cable run.

Inter-operability

- Existing "voice radio" sections of a leaky feeder system can be retained, without changing LineAmps, passives or power dividers
- The "voice radio + Ethernet" sections can be added in the middle, or at the extremities of an existing system
- In the "voice radio + Ethernet" sections:
 - All LineAmps must be replaced (in order to pass the 5 to 98 MHz signal)
 - All power dividers must be qualified to ensure they pass the 5 to 98 MHz signal
- Example just "voice radio" in the travelways, and "voice radio + Ethernet" in the levels
- Example "voice radio + Ethernet" in the travelways and "voice radio" in the levels

Cabling

- It is possible to operate on 50 Ohm LCX (e.g. CMC 50-12)
- Replace the glands with DDLFS-NF50-ADPTR
- Either:
 - Fit N-Male to the end of each 50 Ohm LCX and attach direct to each LineAmp
 - Fit N-Female to the end of each 50 Ohm LCX and use an N-Male to N-Male flexible jumper to connect the LineAmp

Installation

- As per the installation notes for the leaky feeder LineAmp (Course 2), BUT:
- Extra special attention needs to be applied to the cables on the Left an Right sie of an LAE:
- Pictures (good):
 - straight cable runs in an out of LAE in opposing directions
 - as above, but with drip loops
- Pictures (bad):
 - cable running to an LAE an then back on itself (e.g. LAE in a cuddy)
 - cable coiled immediately on each side of the LAE
- The system REQUIRES > 90 dB isolation between Left an Right sides across 5 to 98 MHz. If this is breached, a network loop is formed and a broadcast storm takes down the entire network

